CoMFA and CoMSIA 3D-QSAR analysis of DMDP derivatives as anti-cancer agents

نویسندگان

  • Vivek Srivastava
  • Ashutosh Kumar
  • Bhartendu Nath Mishra
  • Mohammad Imran Siddiqi
چکیده

Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) based on three dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series (78 compounds) of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as potent anticancer agents. The best prediction were obtained with a CoMFA standard model (q(2) = 0.530, r(2) = 0.903) and with CoMSIA combined steric, electrostatic, hydrophobic and hydrogen bond donor fields (q(2) = 0.548, r(2) = 0.909). Both models were validated by a test set of ten compounds producing very good predictive r(2) values of 0.935 and 0.842, respectively. CoMFA and CoMSIA contour maps were then used to analyze the structural features of ligands to account for the activity in terms of positively contributing physiochemical properties such as steric, electrostatic, hydrophobic and hydrogen bond donor fields. The resulting contour maps produced by the best CoMFA and CoMSIA models were used to identify the structural features relevant to the biological activity in this series of analogs. This study suggests that the highly electropositive substituents with low steric tolerance are required at 5 position of the pteridine ring and bulky electronegatve substituents are required at the meta-position of the phenyl ring. The information obtained from CoMFA and CoMSIA 3-D contour maps can be used for the design of deazapteridine-based analogs as anticancer agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D-QSAR and docking analysis on a series of multi-cyclin-dependent kinase inhibitors using CoMFA, and CoMSIA

A series of 42 Pyrazolo[4,3-h]quinazoline-3-carboxamides as multi-cyclin-dependent kinaseinhibitors regarded as promising antitumor agents to complement the existing therapies, wassubjected to a three-dimensional quantitative activity relationship (3D QSAR). Different QSARmethods, comparative molecular field analysis (CoMFA), CoMFA region focusing, andcomparative molecular similarity indices an...

متن کامل

3D-QSAR Modeling of Anti-oxidant Activity of some Flavonoids

The anti-oxidant activities for a diverse set of flavonoids as TEAC (Trolox equivalent anti-oxidant capacity), assay were subjected to 3D-QSAR (3 dimensional quantitative structural-activity relationship) studies using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis). The obtained results indicated superiority of CoMSIA model over CoMFA...

متن کامل

Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking.

DNA repair enzyme O⁶-methylguanine-DNA methyltransferase (MGMT), which plays an important role in inducing drug resistance against alkylating agents that modify the O⁶ position of guanine in DNA, is an attractive target for anti-tumor chemotherapy. A series of MGMT inhibitors have been synthesized over the past decades to improve the chemotherapeutic effects of O⁶-alkylating agents. In the pres...

متن کامل

The Three Dimensional Quantitative Structure Activity Relationships (3D-QSAR) and Docking Studies of Curcumin Derivatives as Androgen Receptor Antagonists

Androgen receptor antagonists have been proved to be effective anti-prostate cancer agents. 3D-QSAR and Molecular docking methods were performed on curcumin derivatives as androgen receptor antagonists. The bioactive conformation was explored by docking the potent compound 29 into the binding site of AR. The constructed Comparative Molecular Field Analysis (CoMFA) and Comparative Similarity Ind...

متن کامل

3D-QSAR studies of dihydropyrazole and dihydropyrrole derivatives as inhibitors of human mitotic kinesin Eg5 based on molecular docking.

Human mitotic kinesin Eg5 plays an essential role in mitoses and is an interesting drug target against cancer. To find the correlation between Eg5 and its inhibitors, structure-based 3D-quantitative structure-activity relationship (QSAR) studies were performed on a series of dihydropyrazole and dihydropyrrole derivatives using comparative molecular field analysis (CoMFA) and comparative molecul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformation

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2008